This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

A Solid Supported Reagent for Internucleoside *H*-Phosphonate Linkage Formation

Nikhil Mohe^a; Petri Heinonen^a; Yogesh S. Sanghvi^b; Roger Strömberg^a
^a Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, Stockholm, Sweden ^b Isis Pharmaceuticals, Inc., Carlsbad, California, USA

To cite this Article Mohe, Nikhil , Heinonen, Petri , Sanghvi, Yogesh S. and Strömberg, Roger(2005) 'A Solid Supported Reagent for Internucleoside *H*-Phosphonate Linkage Formation', Nucleosides, Nucleotides and Nucleic Acids, 24: 5, 897 — 899

To link to this Article: DOI: 10.1081/NCN-200059257 URL: http://dx.doi.org/10.1081/NCN-200059257

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

 $\textit{Nucleosides, Nucleotides, and Nucleic Acids, } 24\ (5-7):897-899,\ (2005)$

Copyright $\ensuremath{\mathbb{C}}$ Taylor & Francis, Inc. ISSN: 1525-7770 print/ 1532-2335 online

DOI: 10.1081/NCN-200059257

A SOLID SUPPORTED REAGENT FOR INTERNUCLEOSIDE H-PHOSPHONATE LINKAGE FORMATION

Nikhil Mohe and Petri Heinonen Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, Stockholm, Sweden

Yogesh S. Sanghvi

— Isis Pharmaceuticals, Inc., Carlsbad, California, USA

Roger Strömberg - Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, Stockholm, Sweden

A fast and convenient procedure for synthesis of dinucleoside H-phosphonates is obtained through use of the novel polystyrene supported 5-carboxy-5-methyl-2-oxo-2-chloro-1,3,2-dioxaphosphorinane reagent. Virtually quantitative H-phosphonate condensations are obtained leading to excellent isolated yields and with only a simple filtration as the purification procedure. This provides for a convenient and high-yielding procedure that should be suited for solution-phase synthesis of oligonucleotides.

RESULTS AND DISCUSSION

We describe the use of the novel polymer bound 5-carboxy-5-methyl-2-oxo-2-chloro-1,3,2-dioxaphosphorinane reagent^[1] in synthesis of dinucleoside H-phosphonates. This is to our knowledge the first reported solid supported chlorophosphate. This reagent is synthesized from isopropylidene-2,2-bis(methoxy)propionic acid, which is first coupled to aminomethylpolystyrene with HBTU/DIPEA in DMF. The isopropylidene group is removed with p-toluene-sulfonic acid in CH_2Cl_2/CH_3OH and the support is then treated with $POCl_3$ in $CH_3CN/collidine$. This chlorophosphate reagent was utilised in preparation of dinucleoside H-phosphonate diesters (Scheme 1).

Reactions were carried out in acetonitrile-pyridine (1:1 or 3:1 v/v, depending on solubility) using 1.78 mg of reagent/mmol of H-phosphonate. Virtually quantitative coupling was obtained in 1 h as judged by ^{31}P NMR analysis of the reaction mixtures. In the preparations a reaction time of 2 h was used. Filtering off of the polymer and washing with phosphate buffer (pH = 7.0) followed by drying and

Address correspondence to Roger Strömberg, Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, S-17177, Stockholm, Sweden; Fax: +46-8-6089127; E-mail: Roger.Stromberg@bioci.ki.se

1 B^1 = Thymine B^2 = Thymine

 $\mathbf{2} \mathbf{B}^1 = \mathbf{N}^6$ -benzoyladenine $\mathbf{B}^2 = \mathbf{Thymine}$

 $\mathbf{3} \mathbf{B}^1 = \mathbf{N}^4$ -benzoylcytosine $\mathbf{B}^2 = \mathbf{Thymine}$

 $\mathbf{4} \mathbf{B}^1 = \mathbf{N}^2$ -isobutyrylguanine $\mathbf{B}^2 = \mathbf{T}$ hymine

SCHEME 1 Use of solid supported 5-carboxy-5-methyl-2-oxo-2-chloro-1,3,2-dioxaphosphorinane for synthesis of di (deoxynucleoside) H-phosphonates.

concentration led to isolation of the products. Only traces of remaining *H*-phosphonate monoesters were detected (primarily because of its use in slight excess) in the crude material. The material was sufficiently pure for direct use in further transformations, but the remaining monoesters were also readily removed by filtration through silica gel with 1,4 dioxane as the solvent. This procedure gave excellent yields (76–81%) of the isolated *H*-phosphonate diesters **1–4**. The products were all characterized by ³¹P NMR, ¹H NMR, and ESI-MS analysis. In preparation of compound **4** no side product from potential reaction on the lactam function of the guanine base was detected even after keeping the reaction mixture in contact with the solid supported chlorophosphate for 8 h.

The above procedure provides for a convenient and high-yielding method for synthesis of dinucleoside H-phosphonates. Distinct advantages are that the reagent can be made in a few steps with relatively inexpensive materials and that the H-phosphonate diesters generated can be conveniently isolated in highly pure form by a simple filtration step. The compounds can then typically be used directly for further transformations to dinucleotides or different modified analogues. In addition, the procedure provides an excellent alternative for the coupling step in solution-phase synthesis of oligonucleotides. The use of the H-phosphonate method^[2,4–8] especially in a modified form^[9,10] has been actualised as an economic alternative for the large scale synthesis of therapeutic oligonucleotides.^[11]

REFERENCES

 Mohe, N.; Heinonen, P.; Sanghvi, Y.; Strömberg, R. A universal solid supported condensing agent. Angew. Chem., to be submitted.

- Garegg, P.J.; Regberg, T.; Stawinski, J.; Strömberg, R. Formation of internucleotidic bonds via phosphonate intermediates. Chem. Scr. 1985, 25, 280.
- Stawinski, J.; Strömberg, R.; Thelin, M.; Westman, E. Studies on the t-butyl-dimethylsilyl group as 2'-O-protection in oligoribonucleotide synthesis via the H-phosphonate approach. Nucleic Acids Res. 1988, 16, 9985
- Garegg, P.J.; Regberg, T.; Stawinski, J.; Strömberg, R. Nucleoside hydrogenphosphonates in oligonucleotide synthesis. Chem. Scr. 1986, 26, 59.
- Garegg, P.J.; Lindh, I.; Regberg, T.; Stawinski, J.; Strömberg, R.; Henrichson, C. Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach. Tetrahedron Lett. 1986, 27, 4051–4054.
- Garegg, P.J.; Lindh, I.; Regberg, T.; Stawinski, J.; Strömberg, R.; Henrichson, C. Nucleoside H-phosphonates. IV. Automated solid phase synthesis of oligo-ribonucleotides by the hydrogenphosphonate approach. Tetrahedron Lett. 1986, 27, 4055–4058.
- Froehler, B.C.; Matteucci, M.D. Nucleoside H-phosphonates: valuable intermediates in the synthesis of deoxyoligonucleotides. Tetrahedron Lett. 1986, 27, 469–472.
- Froehler, B.C.; Ng, P.G.; Matteucci, M.D. Synthesis of DNA via deoxynucleoside H-phosphonate intermediates. Nucleic Acids Res. 1986, 14, 5399–5407.
- Reese, C.B.; Song, Q. A new approach to the synthesis of oligonucleotides and their phosphorothioate analogs in solution. Bioorg. Med. Chem. Lett. 1997, 7, 2787.
- Reese, C.B.; Song, Q. The H-phosphonate approach to the synthesis of oligonucleotides and their phosphorothioate analogs in solution. J. Chem. Soc., Perkin Trans. 1 1999, 1477.
- Reese, C.B.; Yan, H. Solution phase synthesis of ISIS 2922 (Vitravene) by the modified H-phosphonate approach. J. Chem. Soc., Perkin Trans. 1 2002, 2619.